

# **Design Optimization of a Wave Energy Converter**

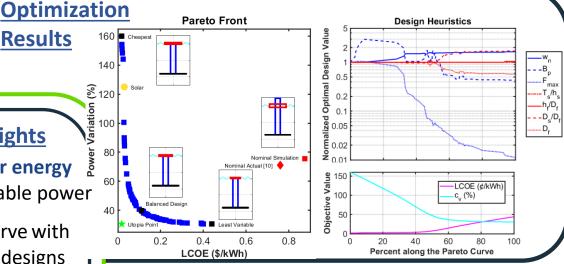
Rebecca McCabe<sup>1</sup>, Olivia Murphy, Maha Haji Cornell University Symbiotic Engineering and Analysis Lab

**Results** 

¹rgm222@cornell.edu

### Goal: use MDO to minimize energy cost and power variation of the RM3 WEC

| MDO                                                                        | WEC                                                                                                                                                                                 | RM3                                                                                                            |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Multidisciplinary Design Optimization                                      | Wave · Energy ·<br>Converter                                                                                                                                                        | Reference ·<br>Model · 3                                                                                       |
| • Procedure to optimize engineering systems with cross-discipline coupling | <ul> <li>Renewable energy for<br/>utility grids and distributed<br/>offshore projects</li> <li>Costs more than solar<br/>and wind, but perhaps<br/>more consistent power</li> </ul> | <ul> <li>Reference WEC design by NREL and Sandia [10]</li> <li>Comprised of two-body point absorber</li> </ul> |


## **Research Highlights**

 Achieved 40 x lower energy cost and 2 x less variable power

 Optimal tradeoff curve with three representative designs

• High **sensitivity** to sea states and economic parameters

 Potential to share hardware designs across applications



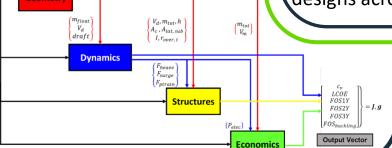
**Discussion** A tradeoff between energy cost (LCOE) and power variation (c<sub>v</sub>) suggests a possibility of a **single hardware design** across applications, with application-specific controls software.

Three representative designs are highlighted: a min-LCOE design for cost-sensitive operations like utility power, a min-variation design for cost-insensitive installations like small offshore systems, and a balanced design for intermediate applications like island microgrids.

## **Simulation and Optimization Formulation**

7 geometric and controller design variables are optimized while enforcing 14 constraints to prevent structural failure, instability, and more.

Input Vector


 $F_{max}$   $B_p$ 

 $x = \{ | T_{s, ratio} \}$ 

Two metrics to minimize:

$$\mathsf{LCOE} = \frac{cost}{energy}$$

std. dev. power



#### **Future Work**

- 1. Improve simulation fidelity
- 2. Consider application-specific objectives
- 3. Extend to other WEC architectures

#### References

- [3] Manasseh, R. et al, 2017. [4] Franzitta, V. et al, 2016.
- - 9] Herber, D. et al, 2014. [1] Goteman, M. et al, 2014. [12] Neary, V. et al, 2014.
  - [13] Martins, J. et al, 2013. [14] Newman, J., 1997.
- [15] Paretosearch, MATLAB. [16] Boretti, A., 2020.