

# Proteomic Profiling of Microalgae During Long-Term Ensiling Reveals Routes of Nutrient Cycling and Dark Adaptation

Chelsea C. St. Germain<sup>1</sup>, Bradley D. Wahlen<sup>1</sup>, Vicki S. Thompson<sup>1</sup>, John McGowen<sup>2</sup> <sup>1</sup>Idaho National Laboratory, Idaho Falls, ID; <sup>2</sup>Arizona State University, Tempe, AZ Contact: Chelsea.St.Germain@inl.gov



### Algae ensiling mitigates problems with seasonal variability

Optimal algae production occurs during in summer months due to optimal temperatures and sunlight. Due to lower growth rates occurring in winter, algae biomass produced during peak months needs to be stored for conversion in the winter. Some value-add co-products created during storage can also help to make algal biofuels more cost-effective.





Carbohydrate metabolism

#### Nitrogen metabolism and cycling

|                                                                 |                    |                   | %                   | Protein:       | %Prote  |           |
|-----------------------------------------------------------------|--------------------|-------------------|---------------------|----------------|---------|-----------|
| Total nitrogen is<br>constant, but protein<br>is being degraded |                    | Trea              | atment              | N (%) T        | otal N* | Total A   |
|                                                                 |                    | Initi             | al Biomass          | 9.5            | 45.3    | 42        |
|                                                                 |                    | in <sup>Unt</sup> | reated 24 hrs       | 10.0           | 47.6    | 30        |
|                                                                 |                    | Unt               | reated 28 days      | 9.6            | 46.1    | 29        |
|                                                                 |                    | Citri             | ic acid 24 hrs      | 9.4            | 45.1    | 40        |
|                                                                 |                    | Citri             | Citric acid 28 days |                | 44.2    | 38        |
|                                                                 | Initial<br>Biomass | Ci                | itric               | Untreated      |         |           |
|                                                                 |                    | 24 hr             | 28 days             | 24 hr          | 28      | days      |
| Amino acid                                                      | gAA/kg algae       | gAA/kg initial    | gAA/kg initial      | gAA/kg initial | gAA/k   | g initial |
|                                                                 |                    | algae*            | algae*              | algae*         | algae*  |           |
| L-<br>HydroxyProline                                            | 0.00               | 0.00              | 0.00                | 0.00           | )       | 0.00      |
| ASX <sup>1</sup>                                                | 40.4               | 39.0              | 37.9                | 28.3           |         | 24.2      |
| L-Threonine                                                     | 21.9               | 20.8              | 20.1                | 15.1           |         | 13.3      |
| L-Serine                                                        | 18.3               | 16.8              | 16.2                | 12.3           |         | 10.3      |
| GLX <sup>1</sup>                                                | 49.5               | 45.6              | 44.1                | 33.6           | 5       | 33.3      |
| L-Proline                                                       | 21.9               | 21.0              | 20.3                | 15.3           | 1       | 12.9      |
| L-Glycine                                                       | 23.5               | 23.0              | 22.4                | 16.7           | 7       | 18.8      |
| L-Alanine                                                       | 36.8               | 34.7              | 33.9                | 25.8           | 3       | 32.1      |
| L-Cysteine                                                      | 5.5                | 4.7               | 4.0                 | 5.1            |         | 3.1       |
| L-Valine                                                        | 25.4               | 25.3              | 24.6                | 18.3           |         | 22.9      |
| L-Methionine                                                    | 11.0               | 9.6               | 8.6                 | 10.5           | 5       | 8.5       |
| L-Isoleucine                                                    | 18.3               | 18.1              | 17.6                | 13.1           |         | 15.9      |
| L-Leucine                                                       | 39.3               | 37.9              | 36.4                | 27.6           | 5       | 32.9      |
| L-Tyrosine                                                      | 17.5               | 16.8              | 16.2                | 12.4           | L I     | 11.5      |
| L-Phenylalanine                                                 | 25.0               | 24.2              | 23.2                | 17.7           | 7       | 17.8      |
| L-Tryptophan                                                    | 9.4                | 9.7               | 9.4                 | 9.8            | 3       | 8.2       |
| L-Lysine                                                        | 26.6               | 26.6              | 24.8                | 18.9           | )       | 13.8      |
| L-Histidine                                                     | 8.1                | 8.0               | 7.4                 | 5.8            | 3       | 5.8       |
| L-Arginine                                                      | 26.3               | 25.5              | 20.7                | 18.6           | 5       | 14.3      |
| Total                                                           | 424.4              | 407.5             | 387.8               | 304.8          | 3       | 299.5     |

#### **Workflow**



0 hr and 28 day

24 hr and 28 day

# Relationships between carbohydrate and protein metabolism





#### Other biological amines?



## **Research Highlights**

- Metabolic analysis reveals novel insights into microalgae during ensiling
- Citric acid treatment completely negates any biomass loss during long-term storage
- Route of production of high value-add co-products identified
- Previously undetected protein degradation results from route of nitrogen cycling in algae

Department of Energy (DOE), Bioenergy Technologies Office (BETO), under Award No. DE-AC07-05ID14517. Doug Whitten and Michigan State University Proteomics Facility