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Some advantages of meshfree methods:
• No problems with mesh-

entanglement/distortion/quality
• Commonly used for large-deformation 

problems and fracture mechanics
• Straightforward adaptive refinement 

implementation

Cathode Composition:
• Randomly-oriented grains
• Strongly anisotropic and nonlinearly [Li]-dependent 

grain material properties can cause grains to expand 
into and contract away from each other 

Charge Cycling:
• Lithium moving between electrodes 

during (dis)charging process causes 
expansion and contraction of grains

What is chemo-mechanical cathode cracking?
• Chemo-mechanical cracking is a result of uneven swelling and 

contraction of adjacent cathode grains, which leads to stress 
concentrations and crack propagation largely along grain boundaries
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What is a meshfree method?
• A numerical method used to spatially discretize a domain without 

explicit connectivity from a mesh, like in the finite element method
• The Reproducing Kernel Particle Method is used in this work

• Anisotropic grain material properties and grain rotations can capture 
non-uniform expansion/contraction, which lead to stress and damage

• Since the finite element model being used for comparison in test case 
2 is 3D instead of 2D, the comparison with the 2D meshfree model 

may not be the most direct benchmark
• Further efforts in model correlation are being investigated for test case 2  
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Future Work
• Capture time-dependent crack growth and battery degradation over lifetime use

• Extend meshfree model to capture arbitrary and more realistic particle geometries
• Couple chemical and mechanical models such that crack formation inhibits localized 

lithium movement within a cathode particle 

Test Case 1: Estimated Displacement Field Δ[Li] < 0
Grain orientations If each grain freely contracts If grains are constrained 

together

Arrows indicate each grain’s principal direction, 
which expands/contracts ~10x more than the 

secondary direction
Test Case 2: Validation with 3D Finite Element Model Δ[Li] < 0
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Two Main Chemo-Mechanical Models:
• Cohesive Zone Models can accurately capture sharp discontinuities across a 

crack but are extremely computationally expensive and intractable for 3D problems
• Continuous Damage Models are easily computed but not well-suited to capture discontinuities

Microstructure
(colored by grain ID)

The number of grains within a single cathode particle can
vary, so the simulation was run with multiple

levels of grain refinement.

Test Cases
1. To verify the anisotropic grain orientations, simpler grain 
structures were used to estimate the deformed configuration

2. To validate the 2D meshfree model, the displacement fields 
were compared with a slice from the 3D finite element model  

Deformed Configuration
(colored by grain ID)

Damage

Damaged particle after (dis)charging cycles

What causes chemo-mechanical cracking?
• A combination of phenomena:

What are the implications for damage of Li-ion batteries?
• Chemo-mechanical cracking leads to reduced battery life
• When these cracks form, they inhibit the movement of lithium 

making it difficult to charge Li-ion batteries

Pristine baseline particle 
before (dis)charging cycles  

Red areas indicate damaged cathode particle zones, 
blue areas indicate undamaged zones

Goal: 
• Use meshfree methods to enhance the continuous damage model’s ability to capture 

discontinuities across a crack and achieve a model that has enhanced accuracy with
reduced discretization complexity for chemo-mechanical modeling of cathode grains
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Nonlinear, [Li]-dependent material 
properties used to determine 
principal and secondary 
expansion/contraction 
coefficients
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Cathode microstructures are approximated as Voronoi cells, 
as shown below. 

Undamaged

High-damage

[1]

[1]

[3]

Large Negative 
Displacement

Large Positive 
Displacement

1. Allen, J., Weddle, P., Verma, A., et al., Quantifying the influence of charge rate and cathode-particle architectures on degradation of Li-ion cells through 3D continuum-level damage models, 
J. Power Sources (2021). doi.org/10.1016/j.jpowsour.2021.230415

2. Chen, J. S., Pan, C., Wu, C. T., Liu, W. K., Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures, CMAME (1996). doi.org/10.1016/S0045-7825(96)01083-3
3. Chen, J. S., Belytschko, T., Meshless and Meshfree Methods, EACM (2015). doi.org/10.1007/978-3-540-70529-1
4. Liu, W. K.,  Jun, S., Li, S., Adee, J., Belytschko, T., Reproducing kernel particle methods for structural dynamics, IJNME (1995). doi.org/10.1002/nme.1620381005
5. Logg, A., Mardal, K.-A., Wells, G. N., et al. Automated Solution of Differential Equations by the Finite Element Method, Springer (2012). doi.org/10.1007/978-3-642-23099-8
6. Singh, A., Pal, S., Coupled chemo-mechanical modeling of fracture in polycrystalline cathode for lithium-ion battery, Int. J. Plast. (2019). doi.org/10.1016/j.ijplas.2019.11.015

https://doi.org/10.1016/j.jpowsour.2021.230415
https://doi.org/10.1016/S0045-7825(96)01083-3
https://doi.org/10.1002/nme.1620381005
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1016/j.ijplas.2019.11.015

