

Characterizing Relatedness of Offshore and Onshore Wind Energy Using Patent Analysis

Yiwen Wang, Anna Goldstein, Erin Baker Mechanical and Industrial Engineering, University of Massachusetts-Amherst

Introduction

- The prospects for a clean technology depend crucially on costs [1]. Offshore wind energy as a novel technology is **more efficient but less cost effective** than onshore wind energy.
- Cost reductions can be achieved as experience accumulates. We want to know how novel offshore wind energy is because novel technologies learn faster than mature ones.
- The relatedness of offshore wind to onshore wind energy affects the modeling of **accumulative capacity** of offshore wind energy.

Learning Curve less mature more mature capacity

Define portfolio vector P for patent domain d:

$$P_d = (c_1, c_2, c_3, ..., c_k)$$

where $c_k = \frac{n_k}{N}, \sum c_k = 1$

k-codes in domain d

n_k – number of patents with code k

 $N - sum of n_k$

Degree of similarity[3]:

$$\text{Euclidean}(P_{off},P_{on}) = \sqrt{\sum\nolimits_{k=1}^{n}\! \left(c_{off,k} - c_{on,k}\right)^2}$$

$$Cosine(P_{off}, P_{on}) = \frac{\sum_{k=1}^{n} c_{off,k} c_{on,k}}{\sqrt{(\sum_{k=1}^{n} c_{off,k}^{2})(\sum_{k=1}^{n} c_{on,k}^{2})}}$$

$$\label{eq:minComplement} \text{MinComplement}(P_{\text{off}},P_{\text{on}}) = \\ \sum\nolimits_{k=1}^{n} \min\{c_{\text{off},k},c_{\text{on},k}\}$$

Empirical patenting data

Technology innovation

Classification code frequency _______

→ Technology characteristics

Distance between points in a technology space

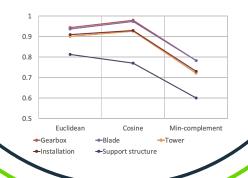
Similarity between technologies

Methods

European Patent Office's Spring 2020 Patent Statistical Database:

Hierarchical classification system: patents are divided into nine sections, which are sub-divided into classes, sub-classes, groups and sub-groups.

Text-based information in titles and abstract: patent documents are required to be specific and descriptive.


	codes	keywords
offshore	F03D 13/25%, Y02E 10/727%	Offshore, ocean, lake, marine
onshore	F03D 9/48, Y02E 10/728%	Onshore, tree, mountain, land

All three methods show that:

"above the water" components (gearbox, blade, tower and installation) have higher relatedness while the "below the water" part (supporting structure) has lower relatedness.

Research Highlights

Conclusion

Offshore and onshore wind energy technologies have different levels of similarity across components. There is a high similarity in blades, gearboxes, towers and installation, but a smaller similarity in supporting structures.

- The difference implies the experience from onshore to offshore wind energy is more transferable for rotors, nacelles, towers and assembly.
- Technologies related to supporting structure are less mature but are more likely to learn faster and contribute to cost reductions.

Reference [1] Jouvet, P., & Sc

- [1] Jouvet, P., & Schumacher, I. (2012). Learning-by-doing and the Costs of a Backstop for Energy Transition and Sustainability. Ecological Economics, 73, 122-132.
- [2] "Experience curves and the relatedness of technologies: Offshore and onshore" by Chris G. Hernandez-Negron, Erin Baker et al. *Under Review*.
- [3] Bar, T., & Leiponen, A. (2012). A measure of technological distance. Economics Letters, 116(3), 457-459.